Connect with us

News

SpaceX’s packed 2022 launch manifest ready to blow 2021 out of the water

(Richard Angle)

Published

on

On the heels of SpaceX’s last launch of 2021, which rounded out a record-breaking year and marked the 100th successful Falcon booster landing, the time has come to look at what the new year might hold for the world’s most prolific commercial launch provider and its workhorse rockets.

Thanks in part to a number of delays that pushed a significant portion of SpaceX’s planned 2021 launches into next year, the company’s 2022 launch manifest is bigger than any other year in its already impressive history. In 2021, having completed 31 orbital launches, SpaceX’s Falcon 9 was the single most launched rocket in the world – beating out several Russian and Chinese rockets operated by each country’s national space agency. On its own, Falcon 9 launched six more times than the entire country of Russia.

However, despite how impressive SpaceX’s performance was this year, all evidence suggests that 2022 could see almost twice as many Falcon launches as 2021.

That information comes from unofficial manifests maintained by fans and followers, who collate dozens of different reports, press releases, and rumors to create a rough picture of upcoming launch plans. Of course, the farther away any given launch is; the more likely it will be significantly delayed. Even official information from SpaceX itself would not be able to accurately predict how many launches it will conduct over a year or more, but the manifests are still useful tools for rough predictions.

In general, short of a major launch failure grounding a given rocket or some other unforeseen catastrophe (2021’s semiconductor supply issues, for example), unofficial manifests have been maybe 60-80% accurate. In the case of 2022, two such well-maintained manifests agree that SpaceX has approximately 40 launches currently scheduled next year – including up to 5 Falcon Heavy missions and at least 35 Falcon 9 launches. SpaceX has never had more launches scheduled in a single year. Simultaneously, after SpaceX’s 2021 performance, 2022 is the first time it’s been possible to seriously believe that the company might actually be able to complete 40 commercial launches in one year. And even then, that figure is still only part of the story.

Advertisement
-->
The 16th of 17 dedicated Starlink launches completed in 2021. (SpaceX)

Starlink

In 2021, SpaceX completed 17 successful dedicated Starlink missions, launching just shy of 1000 satellites – 989 to be exact – in a single year. In the first five months of 2021, before unknown issues caused an unintended Starlink launch hiatus, SpaceX completed 13 of those dedicated Starlink launches. In other words, if satellite production had kept up with SpaceX’s Falcon fleet, the company was technically on track to complete more than 30 Starlink launches in a single year, which – combined with all other missions – would have amounted to a total of 43 launches in 2021.

That specificity is important because – save for a single Starlink mission – the ~40 commercial launches on SpaceX’s 2022 manifest entirely exclude Starlink launches. Given that skipping or intentionally throttling a full year of Starlink launches is simply out of the question for SpaceX, that means that the company has approximately 40 commercial missions to launch on top of one or two dozen potential Starlink V1.5 missions. Assuming that Starlink V1.5 production remains somewhat constrained relative to Starlink V1.0, which peaked at an implied average of more than 1800 satellites per year in H1 2021, it might be reasonable to expect up to 20 (rather than 30) Starlink V1.5 launches in 2022 if production remains steady.

DART, November 24th. (NASA/Bill Ingalls)
Starlink 4-3, December 2nd. (Richard Angle)
IXPE, December 9th. (NASA & Richard Angle)

Combined, that means that SpaceX’s nominal 2022 manifest might actually include up to 60 Falcon launches. The question, then, is whether there is any chance at all for SpaceX to actually complete an average of more than one launch per week next year. Conveniently, SpaceX itself seemingly answered that question just this month. In December 2021, the company – pushing all three of its orbital pads to their limits – completed a record five Falcon 9 launches. Technically, it actually completed those five launches in a mere 19 days. Including NASA’s DART mission, which SpaceX launched on November 24th, the company ultimately launched six Falcon 9 rockets in less than four weeks (27 days).

Starlink 4-4, December 18th. (SpaceX)
Turksat 5B, December 19th. (Richard Angle)
CRS-24, December 21st. (Richard Angle)

Given the company’s recent cadence records and the turnaround records of each of the three pads used to achieve them, it’s clear that SpaceX could technically repeat that feat – a burst of five launches in 3-4 weeks – every month. Obviously, that’s easier said than done and it’s inherently unlikely for a record-breaking monthly launch cadence to become the norm immediately after, but the achievement still demonstrates that SpaceX is technically capable of launching five times in three weeks and then being ready to do so again by the start of the next month.

Averaged over 2022, 5 launches per month would equate to 60 launches per year. In other words, while unlikely, it’s by no means impossible for SpaceX to replicate 2021’s Starlink launch cadence and simultaneously complete as many as 40 commercial launches. In reality, a more plausible outcome for 2022 might be 5-10 commercial launches slipping into 2023 and SpaceX ultimately completing around 30-35 commercial launches and ~15 dedicated Starlink missions for a total of 45-50 – still an extraordinary hypothetical achievement by any measure. Going off of recent trends, which have seen SpaceX’s annual cadence grow from 21 (2018) and 26 (2020) to 31 (2021), 35-40 launches would be a still more conservative estimate for 2022.

Regardless, even excluding Starship, the year is set to be quite the spectacle for SpaceX. The 40 commercial missions tentatively on the company’s manifest include two Crew Dragon NASA astronaut launches, one or two private Crew Dragon missions to the International Space Station, up to 3 commercial Moon landers, a Korean Moon orbiter, NASA’s Psyche asteroid explorer, and as many as five or six Falcon Heavy launches.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD (Supervised) stuns Germany’s biggest car magazine

FSD Supervised recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.

Published

on

Credit: Grok Imagine

Tesla’s upcoming FSD Supervised system, set for a European debut pending regulatory approval, is showing notably refined behavior in real-world testing, including construction zones, pedestrian detection, and lane changes, as per a recent demonstration ride in Berlin. 

While the system still required driver oversight, its smooth braking, steering, and decision-making illustrated how far Tesla’s driver-assistance technology has advanced ahead of a potential 2026 rollout.

FSD’s maturity in dense city driving

During the Berlin test ride with Auto Bild, Germany’s largest automotive publication, a Tesla Model 3 running FSD handled complex traffic with minimal intervention, autonomously managing braking, acceleration, steering, and overtaking up to 140 km/h. It recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets. 

Only one manual override was required when the system misread a converted one-way route, an example, Tesla stated, of the continuous learning baked into its vision-based architecture.

Robin Hornig of Auto Bild summed up his experience with FSD Supervised with a glowing review of the system. As per the reporter, FSD Supervised already exceeds humans with its all-around vision. “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention,” the journalist wrote. 

Advertisement
-->

Tesla FSD in Europe

FSD Supervised is still a driver-assistance system rather than autonomous driving. Still, Auto Bild noted that Tesla’s 360-degree camera suite, constant monitoring, and high computing power mark a sizable leap from earlier iterations. Already active in the U.S., China, and several other regions, the system is currently navigating Europe’s approval pipeline. Tesla has applied for an exemption in the Netherlands, aiming to launch the feature through a free software update as early as February 2026.

What Tesla demonstrated in Berlin mirrors capabilities already common in China and the U.S., where rival automakers have rolled out hands-free or city-navigation systems. Europe, however, remains behind due to a stricter certification environment, though Tesla is currently hard at work pushing for FSD Supervised’s approval in several countries in the region.

Continue Reading

News

Tesla reliability rankings skyrocket significantly in latest assessment

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

Published

on

Credit: Tesla

Tesla ranked in the Top 10 of the most reliable car companies for 2026, as Consumer Reports’ latest index showed significant jumps from the past two years.

In 2022, Tesla ranked 27th out of 28 brands. Last year, it came in 17th.

However, 2026’s rankings were differentCR‘s rankings officially included Tesla in the Top 10, its best performance to date.

Finishing tenth, the full Top 10 is:

  1. Subaru
  2. BMW
  3. Porsche
  4. Honda
  5. Toyota
  6. Lexus
  7. Lincoln
  8. Hyundai
  9. Acura
  10. Tesla

Tesla has had steady improvements in its build quality, and its recent refinements of the Model 3 and Model Y have not gone unnoticed.

The publication’s Senior Director of Auto Testing, Jake Fisher, said about Tesla that the company’s ability to work through the rough patches has resulted in better performance (via CNBC):

“They definitely have their struggles, but by continuing to refine and not make huge changes in their models, they’re able to make more reliable vehicles, and they’ve moved up our rankings.”

He continued to say that Tesla’s vehicles have become more reliable over time, and its decision to avoid making any significant changes to its bread-and-butter vehicles has benefited its performance in these rankings.

Legacy automakers tend to go overboard with changes, sometimes keeping a model name but recognizing a change in its “generation.” This leads to constant growing pains, as the changes in design require intense adjustments on the production side of things.

Instead, Tesla’s changes mostly come from a software standpoint, which are delivered through Over-the-Air updates, which improve the vehicle’s functionality or add new features.

Only one Tesla vehicle scored below average in Consumer Reports’ rankings for 2026 was the Cybertruck. Fisher’s belief that Tesla improves its other models over time might prove to be true with Cybertruck in a few years.

Tesla Cybertruck gets reviewed by Consumer Reports

He continued:

“They’re definitely improving by keeping with things and refining, but if you look at their 5- to 10-year-old models that are out there, when it comes to reliability, they’re dead last of all the brands. They’re able to improve the reliability if they don’t make major changes.”

Regarding Subaru’s gold medal placing on the podium, Fisher said:

“While Subaru models provide good performance and comfort, they also excel in areas that may not be immediately apparent during a test drive.”

Other notable brands to improve are Rivian, which bumped itself slightly from 31 to 26. Chevrolet finished 24th, GMC ended up 29th, and Ford saw itself in 18th.

Continue Reading

Elon Musk

Tesla Full Self-Driving v14.2.1 texting and driving: we tested it

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

Published

on

Credit: Grok

On Thursday, Tesla CEO Elon Musk said that Full Self-Driving v14.2.1 would enable texting and driving “depending on [the] context of surrounding traffic.”

Tesla CEO Elon Musk announces major update with texting and driving on FSD

We decided to test it, and our main objective was to try to determine a more definitive label for when it would allow you to grab your phone and look at it without any nudge from the in-car driver monitoring system.

I’d also like to add that, while Tesla had said back in early November that it hoped to allow this capability within one to two months, I still would not recommend you do it. Even if Tesla or Musk says it will allow you to do so, you should take into account the fact that many laws do not allow you to look at your phone. Be sure to refer to your local regulations surrounding texting and driving, and stay attentive to the road and its surroundings.

The Process

Based on Musk’s post on X, which said the ability to text and drive would be totally dependent on the “context of surrounding traffic,” I decided to try and find three levels of congestion: low, medium, and high.

I also tried as best as I could to always glance up at the road, a natural reaction, but I spent most of my time, during the spans of when it was in my hand, looking at my phone screen. I limited my time looking at the phone screen to a few seconds, five to seven at most. On local roads, I didn’t go over five seconds; once I got to the highway, I ensured the vehicle had no other cars directly in front of me.

Also, at any time I saw a pedestrian, I put my phone down and was fully attentive to the road. I also made sure there were no law enforcement officers around; I am still very aware of the law, which is why I would never do this myself if I were not testing it.

I also limited the testing to no more than one minute per attempt.

I am fully aware that this test might ruffle some feathers. I’m not one to text and drive, and I tried to keep this test as abbreviated as possible while still getting some insight on how often it would require me to look at the road once again.

The Results

Low Congestion Area

I picked a local road close to where I live at a time when I knew there would be very little traffic. I grabbed my phone and looked at it for no more than five seconds before I would glance up at the road to ensure everything was okay:

Looking up at the road was still regular in frequency; I would glance up at the road after hitting that five-second threshold. Then I would look back down.

I had no nudges during this portion of the test. Traffic was far from even a light volume, and other vehicles around were very infrequently seen.

Medium Congestion Area

This area had significantly more traffic and included a stop at a traffic light. I still kept the consecutive time of looking at my phone to about five seconds.

I would quickly glance at the road to ensure everything was okay, then look back down at my phone, spending enough time looking at a post on Instagram, X, or Facebook to determine what it was about, before then peeking at the road again.

There was once again no alert to look at the road, and I started to question whether I was even looking at my phone long enough to get an alert:

Based on past versions of Full Self-Driving, especially dating back to v13, even looking out the window for too long would get me a nudge, and it was about the same amount of time, sometimes more, sometimes less, I would look out of a window to look at a house or a view.

High Congestion Area

I decided to use the highway as a High Congestion Area, and it finally gave me an alert to look at the road.

As strange as it is, I felt more comfortable looking down at my phone for a longer amount of time on the highway, especially considering there is a lower chance of a sudden stop or a dangerous maneuver by another car, especially as I was traveling just 5 MPH over in the left lane.

This is where I finally got an alert from the driver monitoring system, and I immediately put my phone down and returned to looking at the road:

Once I was able to trigger an alert, I considered the testing over with. I think in the future I’d like to try this again with someone else in the car to keep their eyes on the road, but I’m more than aware that we can’t always have company while driving.

My True Thoughts

Although this is apparently enabled based on what was said, I still do not feel totally comfortable with it. I would not ever consider shooting a text or responding to messages because Full Self-Driving is enabled, and there are two reasons for that.

The first is the fact that if an accident were to happen, it would be my fault. Although it would be my fault, people would take it as Tesla’s fault, just based on what media headlines usually are with accidents involving these cars.

Secondly, I am still well aware that it’s against the law to use your phone while driving. In Pennsylvania, we have the Paul Miller Law, which prohibits people from even holding their phones, even at stop lights.

I’d feel much more comfortable using my phone if liability were taken off of me in case of an accident. I trust FSD, but I am still erring on the side of caution, especially considering Tesla’s website still indicates vehicle operators have to remain attentive while using either FSD or Autopilot.

Check out our full test below:

Continue Reading